Performances of Galois sub-hierarchy-building algorithms

By: Contributor(s): Material type: ArticleArticleSeries: ^p Datos electrónicos (1 archivo : 924 KB)Subject(s): Online resources: Summary: The Galois Sub-hierarchy (GSH) is a polynomial-size representation of a concept lattice which has been applied to several fields, such as software engineering and linguistics. In this paper, we analyze the performances, in terms of computation time, of three GSH-building algorithms with very different algorithmic strategies: Ares, Ceres and Pluton. We use Java and C++ as implementation languages and Galicia as our development platform. Our results show that implementations in C++ are significantly faster, and that in most cases Pluton is the best algorithm. Keywords: Galois Sub-hierarchy, AOC-Poset, Performance Analysis.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number URL Status Date due Barcode
Capítulo de libro Capítulo de libro Biblioteca de la Facultad de Informática Biblioteca digital A0035 (Browse shelf(Opens below)) Link to resource No corresponde

Formato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática-UNLP (Colección BIPA / Biblioteca.) -- Disponible también en línea (Cons. 10-03-2008)

The Galois Sub-hierarchy (GSH) is a polynomial-size representation of a concept lattice which has been applied to several fields, such as software engineering and linguistics. In this paper, we analyze the performances, in terms of computation time, of three GSH-building algorithms with very different algorithmic strategies: Ares, Ceres and Pluton. We use Java and C++ as implementation languages and Galicia as our development platform. Our results show that implementations in C++ are significantly faster, and that in most cases Pluton is the best algorithm. Keywords: Galois Sub-hierarchy, AOC-Poset, Performance Analysis.

Formal concepts analysis. 5th International Conference, ICFCA 2007, Clermont-Ferrand, France, February 12-16, 2007. Proceedings. Lecture Notes in Computer Science Volume 4390, p. 166-180. Springer, 2007.