000 01512naa a2200241 a 4500
003 AR-LpUFIB
005 20250311170302.0
008 230201s2007 xx o 000 0 eng d
024 8 _aDIF-M6509
_b6647
_zDIF003007
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aArtemov, Sergei
245 1 0 _aThe intensional lambda calculus
300 _a1 archivo (285,8 KB)
500 _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aWe introduce a natural deduction formulation for the Logic of Proofs, a refinement of modal logic S4 in which the assertion PA is replaced by [[s]]A whose intended reading is "s is a proof of A". A term calculus for this formulation yields a typed lambda calculus λI that internalises intensional information on how a term is computed. In the same way that the Logic of Proofs internalises its own derivations, λI internalises its own computations. Confluence and strong normalisation of λI is proved. This system serves as the basis for the study of type theories that internalise intensional aspects of computation.
534 _aLogical Foundations of Computer Science. Berlín : Springer, 2007. (Lecture Notes in Computer Science; 4514), pp. 12-25
650 4 _aCÁLCULO LAMBDA
650 4 _aLENGUAJES FORMALES
650 4 _aLENGUAJES DE PROGRAMACIÓN
700 1 _aBonelli, Eduardo
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-540-72734-7_2
942 _cCP
999 _c52862
_d52862