000 | 01485naa a2200229 a 4500 | ||
---|---|---|---|
003 | AR-LpUFIB | ||
005 | 20250311170419.0 | ||
008 | 230201s2012 xx r 000 0 eng d | ||
024 | 8 |
_aDIF-M6598 _b6737 _zDIF006016 |
|
040 |
_aAR-LpUFIB _bspa _cAR-LpUFIB |
||
100 | 1 | _aLópez, Javier | |
245 | 1 | 0 | _aVariable population MOPSO applied to medical visits |
300 | _a1 archivo (157,8 kB) | ||
500 | _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) | ||
520 | _aMulti-objective optimization techniques are the ideal support tools for the decision-making process. They provide a set of optimal solutions for each of the significant aspects of the problem, thus summarizing the alternatives to be considered. Having a limited number of alternatives makes it easier for decision makers to perform their tasks, since they can focus their efforts towards the analysis of the available options. In this paper, the main characteristics of multi-objective optimization are summarized, and a real experience is described regarding the optimization of mobile units assignment at a health care company in Argentina using a new method based on swarm intelligence called varMOPSO. | ||
534 | _aFuzzy economic review 17(1), pp.3-14. | ||
650 | 4 | _aCOMPUTACIÓN EVOLUTIVA | |
650 | 4 | _aOPTIMIZACIÓN | |
700 | 1 | _aLanzarini, Laura Cristina | |
700 | 1 | _aFernández Bariviera, Aurelio | |
942 | _cCP | ||
999 |
_c55798 _d55798 |