000 01752naa a2200241 a 4500
003 AR-LpUFIB
005 20250311170419.0
008 230201s2009 xx o 000 0 eng d
024 8 _aDIF-M6599
_b6738
_zDIF006017
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aLópez, Javier
245 1 0 _aParticle swarm optimization with oscillation control
300 _a1 archivo (438,3 kB)
500 _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aParticle Swarm Optimization (PSO) is a metaheuristic that has been successfully applied to linear and non-linear optimization problems in functions with discrete and continuous domains. This paper presents a new variation of this algorithm - called oscPSO - that improves the inherent search capacity of the original (canonical) version of the PSO algorithm. This version uses a deterministic local search method whose use depends on the movement patterns of the particles in each dimension of the problem. The method proposed was assessed by means of a set of complex test functions, and the performance of this version was compared with that of the original version of the PSO algorithm. In all cases, the oscPSO variation equaled or surpassed the performance of the canonical version of the algorithm.
534 _aAnnual conference on genetic and evolutionary computation GECCO 09 (11º : 2009 : Montreal, Canadá) Proccedings ACM, Nueva York, 2009, pp.1751-1752.
650 4 _aCOMPUTACIÓN EVOLUTIVA
650 4 _aOPTIMIZACIÓN
700 1 _aLanzarini, Laura Cristina
700 1 _aDe Giusti, Armando Eduardo
856 4 0 _uhttp://dx.doi.org/10.1145/1569901.1570141
942 _cCP
999 _c55799
_d55799