000 01479naa a2200241 a 4500
003 AR-LpUFIB
005 20250311170452.0
008 230201s2016 xx r 000 0 eng d
024 8 _aDIF-M7755
_b7975
_zDIF007085
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aBasgall, María José
245 1 0 _aData stream treatment using sliding windows with MapReduce
300 _a1 archivo (1,2 MB)
500 _aFormato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aKnowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window. In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task.
534 _aJournal of Computer Science & Technology, 16(2), pp. 76-83.
650 4 _aBIG DATA
650 4 _aBASES DE DATOS
650 4 _aFLUJO DE DATOS
700 1 _aHasperué, Waldo
700 1 _aNaiouf, Ricardo Marcelo
942 _cCP
999 _c56861
_d56861