000 01578naa a2200241 a 4500
003 AR-LpUFIB
005 20250311170453.0
008 230201s2018 xx o 000 0 eng d
024 8 _aDIF-M7780
_b7997
_zDIF007109
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aIglesias Caride, Martín
245 1 0 _aStock returns forecast :
_ban examination by means of artificial neural networks
300 _a1 archivo (401,0 kB)
500 _aFormato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aThe validity of the Efficient Market Hypothesis has been under severe scrutiny since several decades. However, the evidence against it is not conclusive. Artificial Neural Networks provide a model-free means to analize the prediction power of past returns on current returns. This chapter analizes the predictability in the intraday Brazilian stock market using a backpropagation Artificial Neural Network. We selected 20 stocks from Bovespa index, according to different market capitalization, as a proxy for stock size. We find that predictability is related to capitalization. In particular, larger stocks are less predictable than smaller ones.
534 _aComplex Systems: Solutions and Challenges in Economics, Management and Engineering, 125, pp. 399-410.
650 4 _aREDES NEURONALES
653 _aíndice Bovespa
700 1 _aBariviera, Aurelio F.
700 1 _aLanzarini, Laura Cristina
856 4 0 _uhttps://doi.org/10.1007/978-3-319-69989-9_23
942 _cCP
999 _c56884
_d56884