000 01638naa a2200229 a 4500
003 AR-LpUFIB
005 20250311170453.0
008 230201s2018 xx o 000 0 eng d
024 8 _aDIF-M7791
_b8007
_zDIF007119
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aRodríguez, J. M.
245 1 0 _aEvaluation of open information extraction methods using Reuters-21578 database
300 _a1 archivo (375,3 kB)
500 _aFormato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aThe following article shows the precision, the recall and the F1-measure for three knowledge extraction methods under Open Information Extraction paradigm. These methods are: ReVerb, OLLIE and ClausIE. For the calculation of these three measures, a representative sample of Reuters-21578 was used; 103 newswire texts were taken randomly from that database. A big discrepancy was observed, after analyzing the obtained results, between the expected and the observed precision for ClausIE. In order to save the observed gap in ClausIE precision, a simple improvement is proposed for the method. Although the correction improved the precision of Clausie, ReVerb turned out to be the most precise method; however ClausIE is the one with the better F1-measure.
534 _aInternational Conference on Machine Learning and Soft Computing (2da : 2018 : Phu Quoc, Vietnam)
700 1 _aMerlino, Hernán
700 1 _aPesado, Patricia Mabel
700 1 _aGarcía-Martínez, Ramón
856 4 0 _uhttp://dx.doi.org/10.1145/3184066.3184099
942 _cCP
999 _c56894
_d56894