000 01604naa a2200265 a 4500
003 AR-LpUFIB
005 20250311170459.0
008 230201s2017 xx o 000 0 eng d
024 8 _aDIF-M8008
_b8224
_zDIF007311
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aPuente, C.
245 1 0 _aEvaluation of causal sentences in automated summaries
300 _a1 archivo (1,0 MB)
500 _aFormato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aThis paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.
534 _aIEEE International Conference on Fuzzy Systems (2017 : Nápoles, Italia)
650 4 _aSOFT COMPUTING
653 _aresúmenes automáticos
700 1 _aVilla Monte, Augusto
700 1 _aLanzarini, Laura Cristina
700 1 _aSobrino, A.
700 1 _aOlivas Varela, José Angel
856 4 0 _uhttp://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015666
942 _cCP
999 _c57086
_d57086